Решить по алгебре: 4^(x+2)=128; 16^(x-9)=1/2; 32^(2x)=4(2x+3)
25 Просмотров
Задание:
Решить по алгебре:
- 4^(x+2)=128
- 16^(x-9)=1/2
- 32^(2x)=4(2x+3)
- 5(x+5)=0,04
- 2^(12-2x)=1/8
- 25^(x)*(1/5)^2=125^(x+1)
- 16^(5-3x)=0,125^(5x-6)
- (1/4)^(x-3)=256^(2x)
- 9^(3-x)=3,24*5^(3-x)
- 2^(x+4)-2^(x)=120
- 3^(5-x)=7^(x-5)
- 4^(x)-3*2^x=4
- 4^x-2^(x+1)=48
Ответ на задание:
1.\( 4^{x+2} = 128 \)
\( 4^{x+2} = 4^3 \)
\( x+2 = 3 \)
\( x = 1 \)
2. \( 16^{x-9} = \frac{1}{2} \)
\( 16^{x-9} = 2^{-1} \)
\( x-9 = -1 \)
\( x = 8 \)
3. \( 32^{2x} = 4(2x+3) \)
\( 2^{5(2x)} = 2^{2(2x+3)} \)
\( 5(2x) = 4(2x+3) \)
\( 10x = 8x + 12 \)
\( x = 6 \)
4. \( 5(x+5) = 0.04 \)
\( 5x + 25 = 0.04 \)
\( 5x = -24.96 \)
\( x = -4.992 \)
5. \( 2^{12-2x} = \frac{1}{8} \)
\( 2^{12-2x} = 2^{-3} \)
\( 12-2x = -3 \)
\( x = 7.5 \)
6. \( 25^x \cdot (1/5)^2 = 125^{x+1} \)
\( 5^{2x} \cdot 5^{-2} = 5^{3(x+1)} \)
\( 2x – 2 = 3x + 3 \)
\( x = -5 \)
7. \( 16^{5-3x} = 0.125^{5x-6} \)
\( 2^{4(5-3x)} = 2^{-3(5x-6)} \)
\( 20 – 12x = -15x + 18 \)
\( 3x = -2 \)
\( x = -\frac{2}{3} \)
8. \( \left(\frac{1}{4}\right)^{x-3} = 256^{2x} \)
\( \left(\frac{1}{2}\right)^{2(x-3)} = 2^{8x} \)
\( -2(x-3) = 8x \)
\( x = \frac{3}{5} \)
9. \( 9^{3-x} = 3.24 \cdot 5^{3-x} \)
\( 3^{2(3-x)} = 3.24 \cdot 5^{3-x} \)
\( 3(3-x) = 3.24 \)
\( 9 – 3x = 3.24 \)
\( x = \frac{9 – 3.24}{-3} \)
10. \( 2^{x+4} – 2^x = 120 \)
\( 2^x \cdot 2^4 – 2^x = 120 \)
\( 16 \cdot 2^x – 2^x = 120 \)
\( 14 \cdot 2^x = 120 \)
\( x = \frac{\log\left(\frac{120}{14}\right)}{\log(2)} \)
11. \( 3^{5-x} = 7^{x-5} \)
\( 3^{5-x} = 3^{2(x-5)} \)
\( 5-x = 2x – 10 \)
\( 3x = 5 \)
\( x = \frac{5}{3} \)
12. \( 4^x – 3 \cdot 2^x = 4 \)
\( 2^{2x} – 3 \cdot 2^x = 4 \)
\( 2^x(2^x – 3) = 4 \)
\( x = \frac{\log\left(\frac{7}{2}\right)}{\log(2)} \)
13. \( 4^x – 2^{x+1} = 48 \)
\( 2^{2x} – 2 \cdot 2^x = 48 \)
\( 2^x(2^x – 2) = 48 \)
\( x = \frac{\log(7)}{\log(2)} \)